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Quantization of Anisotropic Rigid Body
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A classical model of the rigid body and a quantum one are presented. The mechanics of
therigid body is investigated within the framework of the Lie group theory. Two different
prescriptions for the quantization of the arbitrary (i.e., anisotropic or spherical) rigid
body are proved to be equivalent.
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Laplace—Beltrami operator.

1. INTRODUCTION

There are two prescriptions for the quantization of the rigid body. The first
prescription is based on arelation between quantities belonging to the framework of
the classical Hamiltonian mechanics and differential operators on the configuration
space of a mechanical system. The second one is a correspondence between the
kinetic energy expressed by the velocity, not by the momentum (i.e., the quantity
belonging to the Lagrangian framework) and the Laplace—Beltrami operator for a
certain Riemannian metric on the configuration space of the mechanical system.
The two prescriptions are briefly discussed in Section 3.

In many monograph, books and papers within the scope of the mechanics,
the problem of the equivalence of the two quantization prescriptions mentioned
above is not considered. For example, in Landau and Lifshitz (1965, pp. 383-385)
the kinetic energy operator of the rigid body is built in accordance with the first
prescription. The second one is omitted.

In Abraham and Marsden (1978, pp. 427-433), the authors develop the first
prescription and then define the kinetic energy operator on the grounds of the
second prescription, passing over the first one. Afterwards, discussing the quanti-
zation of the rigid body, they give the expression for the kinetic energy operator
which actually corresponds to the first prescription. There is no explanation of why
the two definitions coincide.
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In our paper, filling the gap which exists in the literature, we prove that, for
the rigid body, the two quantization prescriptions are equivalent, i.e., they lead to
the same quantum Hamiltonian.

Notations. LetV andW be linear spaces. We shall denotelbf}/, W) andV*
the linear space of linear mappings— W and the dual space &, respectively.
For p € V* andv € V, the value ofp onv will be denoted by p, v).

Lety € L(V, W). We define the transpose ¢f ¢* € L(W*, V*), by

¢*(p) = po ¢ for pe W*. (1.1)

If ¢ is the isomorphism oY ontoW, we can define the contragradient mapping
of ¢, ¢ € L(V*, W*), by

¢=(¢7) =" (1.2)

Let M andN be differentiable manifolds of clags™. By (M) (resp.x (M))
we shall denote the associative algebra of functibhs> R of classC* (resp.
the Lie algebra of vector fields of cla€s° on M).

Let K be atensors field oM and X € x(M). We shall denote by#K and
X] the Lie derivative oK and the interior product with respectXq respectively.

Let f : M — N be a differentiable mapping ande M. By (f,)x (resp.f.)
we shall denote the mappifgM — TN tangent tof atx (resp. the mapping
TM — TN, tangent tof ).

2. CLASSICAL MECHANICS OF RIGID BODY

In this section we shall review basic concepts belonging to the classical me-
chanics of the rigid body. The mechanics is considered within the framework of
the Lie group theory.

The configuration space of the rigid body without translational degrees of
freedom can be identified with the special orthogonal gr8@s; R). We shall
denoteSO(3; R) by G.

Let

7:TG—- Gandt*: TG — G

be the natural projections. The canonical Pfaff faonon T*G is a differential
one-form onT *G defined by

wp = Ppo((t)s)p for pe T*G. (2.1)

Given X € x(G) we can uniquely define a Hamiltonian vector fietde
x(T*G) as follows:

(t)e0 X = X o (t*), £50=0. (2.2)
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The function

Fx = (o, X) (2.3)
is the generator oX, i.e.,
X]y = —dFx, y =do. (2.4)

We shall callX the canonical lift ofX.

Letebe the identity ofS andg, the Lie algebra of left invariant vector fields
onG. We shall identify the Lie algebrgof G with the tangent spadeG endowed
with the Lie bracket induced by, . For A € g, we shall denote by' the unique
left invariant vector field ors (i.e. A' € g, ) such that

(A)e = A. (2.5)
The angular velocity with respect to the comoving (body-fixed) frame is a mapping
Q:TG—g

which sendy € T Ginto Q(v) € g uniquely determined by the condition

(@W))g =V, (2.6)
whereg = t(v), i.e.,v € T4G.

Let
Ad: G — GL(Q)

be the adjoint representation Gfin g. We shall denote biy, (resp.rg) the left
(resp. right) translation o& by an elemeng € G:
We have

lgh=gh, rgh=hgforheG.
We have
Q((g)xv) = Q(v), Q((rg)«v) = (Adg1))Q(V) forve TG, ge G. (2.7)
The quasimomentum conjugateois a mapping
Z TG —» ¢*
given by
D ITyG = (QITyG) forg e G (2.8)

(see (1.1) and (1.2)). L
Let A e g andF[A] be the generator of the canonical (i) € x(T*G) of
A € g, c x(G) (see (2.5) and (2.2)). Then Eq. (2.3) becomes

FIA = (Y. A), 2.9)
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FLAIP) = (X(p). A). PeT G

(see, Shwianowski, 1975a, p. 182).
Let (Ea),a =1, 2, 3, be a basis fag and [E?) the basis fog* dual to Ep),

i.e.,
(E®, Ep) = 86%. (2.10)
We have
Q=Q%,and) =) E? (2.11)
a
where

Q*e F(TG), Y e F(T*G).

By virtue of (2.10),

S ®=(Y(p).E), peTG. 2.12)
Combining Egs. (2.9) and (2.12) yields
> =FI[El. (2.13)

a

Thus)_, is the generator of the canonical IQE—g)of E! € 9. C x(G), whereE}
andE,, are related by

(Ba)e=Ea (2.14)

(see (2.5)).
The structure constan®°,p, of g with respect to the basig&() are given by
[Eaa Eb] = CCabEc- (2.15)

Sinceg is simple, the structure constants are traceless:
CPspp =0 (2.16)

According to notations (2.14) and (2.15}), a = 1, 2, 3, is the basis fay, such
that

[EL, Ep] = CCabEL. (2.17)

Let B be the Killing—Cartan form ofj. SinceG = SQ3; R) is simple and
compact,B is nondegenerate and negative definite. Hence, forany0,

Ke=—aB (2.18)
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is the (positive definite) inner product ig = TeG. Using K¢, we define a
Riemannian metri&K on G by

K(vi, V2) = Ke(Q(V1), 2(v2)), Vi,V2€ T4G, geG. (2.19)

K is called the Killing—Cartan metric o®. It is invariant by both right and left
translations ofG:

K=(@g)'K=(g)Kforallge G (2.20)

(see Kobayashi and Nomizu, 1963, p. 155). Hence, both left and right invariant
vector fields orG are the Killing fields of the metrié& .
The Lagrangian of the rigid body fastened at some point,

L:TG— R,
is a function of the form

L=T-Vor, (2.21)
where

T:TG—>RandV:G—>R
are the kinetic energy and the potential, respectively. The kinetic energy is given
by
TV) = %I (2(v), (v)) forv e TG, (2.22)

wherel is a positive definite inner product @ We shall calll the tensor of inertia
with respect to the co-moving (body-fixed) frame. Let us put

lap = I (Ea, Ep). (2.23)
Then
T(V) = %labsza(v)szb(v), veTG, (2.24)
whereQ? are given by first formula (2.11).
Definition 2.1. The rigid body is said to be spherical or isotropic if

I =AKe (2.25)
for a certainh > 0O (see (2.18)).

Definition 2.2. The rigid body is said to be anisotropic if condition (2.25) is not
satisfied.
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Let the rigid body be spherical. Substituting (2.25) and (2.19) into formula
(2.22) gives

T(V) = %/\K(V, V).

Hence, by virtue of (2.20), the kinetic energyis invariant by both left and right
translations ofG.

For the anisotropic rigid bodyl, is invariant by the left translations (see first
equation (2.7)), but, in contrast to the isotropic ohdgails to be invariant by the
right translations (see second Eq. (2.7)).

The kinetic energy defined as the functiondfG, i.e.,

T:7T°G — R,

have the form
(0= 1Y ()Y (), peT'G, (2.26)
a b

where [ 29] is the inverse matrix of Il,,] and >, are given by second formula
(2.11).
The Hamiltonian of the rigid body,

H=T+Vo1*: TG - R,
is defined by

H= }|ab22+v ot*. (2.27)
2 a b

3. QUANTUM RIGID BODY

There are two different, standard prescriptions for the quantization of the rigid
body. In this section we shall recall them. In the next section we shall prove the
prescriptions to be equivalent.

Let F°(G) (resp.x°(G)) be the associative algebra of functiodBs— ¢ of
classC* (resp. the Lie algebra of complex vector fields of cl@$s on G). The
differentiability is understood as the differentiability in the real domain. We shall
denote byEndf(G) the associative algebra Gflinear endomorphisms oF¢(G).

Let DE(G) be the associative subalgebrdwftF(G), generated by ¢(G) and
endomorphisms of the multiplication by the functions belonging-t¢G) (i.e.,
f(h)= fhforh e F¢(G)andf € F%(G) C End?(G)). We shall callD € D%(G)

a differential operator (of clags*™) on G.

Let u be the Haar measure on the compact Lie gr@p SQ3;R) and

L?(G, u) the Hilbert space of complex functions @, square-integrable with
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respect to the measure Obviously,
FYG) C L*(G, w). (3.1)

There exists the unique differential three-fosran G (which does not vanish
anywhere) such that for anfy € L2(G, ),

| t@du@ = [ tn (3.2)
G G
Sincep is invariant by right and left translations 6,

£xn =0 forall X eg,. 3.3)

According to the general quantization procedure (formulated, e.g., in Mackey,
1963 or Sawianowski, 1975b), the space of the physical states of the quantum rigid
body is identified with7¢(G) N L%(G, ) = F¢(G) (see (3.1)).

Let

¢ € F(G).
Then
ot : T*G — R.
Passing from the classical level to the quantum one, we retémnore precisely
@ o t¥) actually unchanged. Namely, we replage t* with the operatory e
DE(G) given by
P(¥) = oy for y € F5(G).

Hence, we can identify With ¢ and write
p=0. (3.4)
Let
Fx : T"G - R

be the generator of the canonical ltof X € x(G) (see (2.2) and (2.3)). On the
qguantum level, the functioRy is replaced with the operatéry € D°(G) defined
as follows:

A h h
Fx =X+ =px, (3.5)
i 2
whereh = h/2x, h is the Planck constant ang € F(G) C D¢(G) is uniquely
determined by the condition

Exn = pxn
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(see (3.2)). Hence, by virtue of (3.3),
A h
Fx=i—XforaII Xeg,. (3.6)

Combining Egs. (2.13) and (3.6) leads to

— h |
2;=TEW (3.7)
We shall now employ the quantization rule presented above to construct a
quantum Hamiltonian of the rigid body:

H e DY(G).

Replacing in equation (2.27) the functiohs,, with the operatoria, given by
(3.7) and retainingy unchanged (see (3.4)) yields

A h? abel

H =—7I E,E,=V. (3.8)

The quantization prescription discussed above is based on the correspon-
dence between quantities belonging to the framework of the classical Hamiltonian
mechanics (i.e., function§*G — R) and differential operators o8. There is
another prescription for the quantization of the rigid body. It is a correspondence
between the kinetic energly expressed by the velocity;, not by the momentum
p (i.e., the quantity belonging to the Lagrangian framework) and some differential
operator orG, defined as follows.

Since the tensor of inerti& is the inner product ig = TG, it induces a
Riemannian metri€’ on G:

F(Vl, V2) = |(Q(V1), Q(Vz)), Vi, Vo € TgG, ge G. (39)

From first formula (2.7) it follows thaf is invariant by the left translations of
G. This means that the right invariant vector fields@rare the Killing fields of
. In contrast to the Killing—Cartan metri€, I fails to be invariant by the right
translations if the rigid body is anisotropic. Hence, for the anisotropic rigid body
the left invariant vector fields 06 fail to be the Killing fields ofT".

Substituting (3.9) into Eq. (2.22) leads to the following formula for the kinetic
energy of the rigid body:

TV) = %F(v, V) ve TG. (3.10)

We postulate that, on the quantum level, the funclidgiven by (3.10) is replaced
with the operator of the kinetic energy, e D¢(G), defined by

T=——"Ar, (3.11)
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whereAr denotes the Laplace—Beltrami operator on G corresponding to the metric
I'. Then the classical formula

H=T+Vot*":T"G— R
is replaced with the quantum one:
HAr =T +V e DYG).

As in the previous casd/ is given by (3.4). Hence

N h?
Hr = —7Ar‘ + V. (3.12)
If the rigid body is spherical,
=K
for a certainh > 0 (see (2.25)). Then itis easy to verify that
A=A,

whereH is defined by (3.8).

In the next section we shall prove that the quantization procedure leading to
(3.8) and that leading to (3.12) are also equivalent (i.e., equation (3.13) is also
satisfied) if the rigid body is anisotropic.

Remark 3.1. For example, in Abraham and Marsden (1978, p. 433) one can find
the equation similarto (3.13). However, the authors do not explain why the operator
Hr- coincides withH.

4. EQUIVALENCE OF TWO PRESCRIPTIONS FOR QUANTIZATION
OF ANISOTROPIC RIGID BODY

To begin with, let us recall the concept of the Laplace—Beltrami operator on
the Riemannian manifold.

Let M be ann-dimensional Riemannian manifold of clas$® with a metric
h. We shall denote by the covariant differentiation induced by the Levi-Civita
connection for the metrib.

The Laplace—Beltrami operator dv corresponding td, Ah € D¢(M), is
defined as follows. Letl, ),k = (x'),i =1, ..., n, be any chart oM. We put

hiU = h;dx @ dx, /|h| = /|deth;]]. (4.1)

By [hi/] and T jx we shall denote the inverse matrix ¢f] and the com-
ponents of the Levi—Civita connection fbr respectively. The value ok, on
f € F¢(M) is defined by

(AnF)IU = hivi(A ). (4.2)
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Using the identities
Vvh=0 andl“i jk = Fikj

turns Eq. (4.2) into the form

(Ap U = \/%(h”\/ﬁf,j)‘i. (4.3)

Obviously, the commas in (4.3) denote partial differentiation with respect to the
coordinates ofl, «).

Let &/ be an open set of M aniy, ..., Xp, € x(Uf) such that Kp), A=
1,...,n,isthe field of linear frames. By.(*), A= 1, ..., n, we shall denote the
field of linear coframes dual toXy), i.e., (w®, Xg) = 8@.

We define a system of functions*gc € F(U) by

[Xg, Xc] =y scXa. (4.4)

we cally A the structural functions of{s). We put

hid = hago™ ® wB, /|nX| = /|dethag]|. (4.5)

By [h”®] we shall denote the inverse matrix df4s).
Let (U, k), k = (x') be any chart oM such thaty NI/ # . We set

9 .
XalUNU = X'AW' oMUNU = wdX. (4.6)
Combining Egs. (4.4) and (4.6) leads to

XiA(a)Aj,k — a)Ak,j) = }/ABcXiAa)JBa)E. 4.7)

Replacing onthe right-hand side of Eq. (4:3), +/Ih] andh'l with X4, /|hX],
andh”B, respectively, we obtain the value of some differential operator on the
function f. In other words, we defina x € D) by

\/;_X|XA(hAB\/|hX|XB f) (4.8)

Axf =
for f € FE(U).

Theorem 4.1. A necessary and sufficient condition that
Ax = AU (4.9
is that the structural functiong*gc be traceless, i.e.,

yRea=0 B=1,...,n. (4.10)
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Proof: Let (U, k), k = (x') be a chart oM such thatU NI/ # @. By virtue of
Egs. (4.1), (4.5), and (4.6),

h*8 = wfwPh,  /|nX| = [detfXE]nxnlv/IN. (4.11)

Substituting formulae (4.11) and first equation (4.6) into (4.8), and then using
(4.3) yields

(Ax DU NU = (A F)IUNU+R £,
R = (defXy]) " Xh(wf def{ Xy ]),h¥.
Hence, Eq. (4.9) is satisfied if and only if
R f; =0forall f e FS(U). (4.12)
SinceR' do not depend ori, condition (4.12) is equivalent to the following:
R=0 i=1,,...,n. (4.13)
By a straightforward calculation, we turn the system of Egs. (4.13) into the form
Xh(@?i —o™j)=0, j=1,...,n (4.14)
By virtue of (4.7), system (4.14) is equivalent to (4.10). Hence, we showed that
Eqg. (4.9) is satisfied if and only if system (4.10) is satisfied. O

We are now in a position to prove that the two quantization prescriptions
presented in Section 3 are equivalent.

Theorem 4.2. LetH (resp. I:|F) be the quantum Hamiltonian of the arbitrary
(i.e., anisotropic or spherical) rigid body defined by (3.8) (resp. (3.12)). Then

H="Hr. (4.15)

Proof: Let us express the Laplace—Beltrami operater(corresponding to the
left invariant metrid” onG) in terms of a distinguished field of linear frames®@n
namely the basisE(g), a=1, 2, 3, for the Lie algebrg, of left invariant vector
fields onG.

Let (8),a = 1, 2, 3, be the field of linear coframes @nhdual to E). We
put

I =Tapp® @ B°.
ThenT 'y, € F(G) are given by
Tab = I'(EL, E}). (4.16)
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Let

VITT = V/IdetlCa]|

and [M2°] be the inverse matrix ofiap).

From (2.17) it follows that the structural functions of the field of linear frames
(EL) (defined by (4.4)) are simply the structure const&ftg, of g, . By virtue of
(2.16), condition (4.10) is satisfied. Then Theorem 4.1 implies that

Arf = % EL(M2*/IT[ELT) (4.17)

for f € F¢(G).
Substituting (3.9) into (4.16) leads to

Tan(@) = 1 (Q((EY),), Q((Eb),)), 9€G.
Combining Eq. (2.6) and (2.14) gives
Q((EL)g) = Ea, geG.
Hence, by virtue of (2.23),
Fap(g) = lap for ge G. (4.18)

The componentk,, of the tensor of inertia are obviously constants. Thus equation
(4.18) implies thaf 4, are the constant functions @. Then./[T’| andI"2° are
the constant functions, too. Hence formula (4.17) can be written as

Arf =T?EL(E}T).
By virtue of (4.18),
l—wab — |ab

where [ 2] is the inverse matrix ofl,]. Thus
Arf = I12PEL(ELf) for f € FX(G).

Hence
Ar = I12°ELE]. (4.19)
Substituting (4.19) into formula (3.12) yields
N h
Hr = —ElabELEL + V. (4.20)
Comparing (4.20) with (3.8), we find that Eq. (4.15) is satisfied. O
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