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A classical model of the rigid body and a quantum one are presented. The mechanics of
the rigid body is investigated within the framework of the Lie group theory. Two different
prescriptions for the quantization of the arbitrary (i.e., anisotropic or spherical) rigid
body are proved to be equivalent.
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1. INTRODUCTION

There are two prescriptions for the quantization of the rigid body. The first
prescription is based on a relation between quantities belonging to the framework of
the classical Hamiltonian mechanics and differential operators on the configuration
space of a mechanical system. The second one is a correspondence between the
kinetic energy expressed by the velocity, not by the momentum (i.e., the quantity
belonging to the Lagrangian framework) and the Laplace–Beltrami operator for a
certain Riemannian metric on the configuration space of the mechanical system.
The two prescriptions are briefly discussed in Section 3.

In many monograph, books and papers within the scope of the mechanics,
the problem of the equivalence of the two quantization prescriptions mentioned
above is not considered. For example, in Landau and Lifshitz (1965, pp. 383–385)
the kinetic energy operator of the rigid body is built in accordance with the first
prescription. The second one is omitted.

In Abraham and Marsden (1978, pp. 427–433), the authors develop the first
prescription and then define the kinetic energy operator on the grounds of the
second prescription, passing over the first one. Afterwards, discussing the quanti-
zation of the rigid body, they give the expression for the kinetic energy operator
which actually corresponds to the first prescription. There is no explanation of why
the two definitions coincide.
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In our paper, filling the gap which exists in the literature, we prove that, for
the rigid body, the two quantization prescriptions are equivalent, i.e., they lead to
the same quantum Hamiltonian.

Notations. Let V andW be linear spaces. We shall denote byL(V, W) andV∗

the linear space of linear mappingsV → W and the dual space ofV , respectively.
For p ∈ V∗ andv ∈ V , the value ofp onv will be denoted by〈p, v〉.

Let φ ∈ L(V, W). We define the transpose ofφ, φ∗ ∈ L(W∗, V∗), by

φ∗(p) = p ◦ φ for p ∈ W∗. (1.1)

If φ is the isomorphism ofV ontoW, we can define the contragradient mapping
of φ, φ̃ ∈ L(V∗, W∗), by

φ̃ = (φ−1)∗ = (φ∗)−1. (1.2)

Let M andN be differentiable manifolds of classC∞. ByF(M) (resp.χ (M))
we shall denote the associative algebra of functionsM → R of classC∞ (resp.
the Lie algebra of vector fields of classC∞ on M).

Let K be a tensors field onM andX ∈ χ (M). We shall denote by £X K and
Xc the Lie derivative ofK and the interior product with respect toX, respectively.

Let f : M → N be a differentiable mapping andx ∈ M . By ( f∗)x (resp. f∗)
we shall denote the mappingTx M → Tf (x)N tangent tof atx (resp. the mapping
T M→ T N, tangent tof ).

2. CLASSICAL MECHANICS OF RIGID BODY

In this section we shall review basic concepts belonging to the classical me-
chanics of the rigid body. The mechanics is considered within the framework of
the Lie group theory.

The configuration space of the rigid body without translational degrees of
freedom can be identified with the special orthogonal groupSO(3; R). We shall
denoteSO(3;R) by G.

Let

τ : T G→ G andτ ∗ : T∗G→ G

be the natural projections. The canonical Pfaff formω on T∗G is a differential
one-form onT∗G defined by

ωp = p ◦ ((τ ∗)∗)p for p ∈ T∗G. (2.1)

Given X ∈ χ (G) we can uniquely define a Hamiltonian vector field̄X ∈
χ (T∗G) as follows:

(τ ∗)∗ ◦ X̄ = X ◦ (τ ∗), £X̄ω = 0. (2.2)
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The function

FX = 〈ω, X̄〉 (2.3)

is the generator of̄X, i.e.,

X̄cγ = −d FX, γ = dω. (2.4)

We shall callX̄ the canonical lift ofX.
Let ebe the identity ofG andgL the Lie algebra of left invariant vector fields

onG. We shall identify the Lie algebrag of G with the tangent spaceTeG endowed
with the Lie bracket induced bygL . For A ∈ g, we shall denote byAl the unique
left invariant vector field onG (i.e. Al ∈ gL ) such that

(Al )e = A. (2.5)

The angular velocity with respect to the comoving (body-fixed) frame is a mapping

Ä : T G→ g

which sendsv ∈ T G intoÄ(v) ∈ g uniquely determined by the condition

((Ä(v))l )g = v, (2.6)

whereg = τ (v), i.e.,v ∈ TgG.
Let

Ad : G→ GL(g)

be the adjoint representation ofG in g. We shall denote bylg, (resp.rg) the left
(resp. right) translation ofG by an elementg ∈ G:

We have

l gh = gh, rgh = hg for h ∈ G.

We have

Ä((l g)∗v) = Ä(v), Ä((rg)∗v) = (Ad(g−1))Ä(v) for v ∈ T G, g ∈ G. (2.7)

The quasimomentum conjugate toÄ is a mapping∑
: T∗G→ g∗

given by ∑
|T∗g G = (Ä|̃TgG) for g ∈ G (2.8)

(see (1.1) and (1.2)).
Let A ∈ g andF [ A] be the generator of the canonical lift(Al ) ∈ χ (T∗G) of

Al ∈ gL ⊂ χ (G) (see (2.5) and (2.2)). Then Eq. (2.3) becomes

F [ A] =
〈∑

, A
〉
, (2.9)
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i.e.,

F [ A]( p) =
〈∑

(p), A
〉
, p ∈ T∗G

(see, SlÃawianowski, 1975a, p. 182).
Let (Ea), a = 1, 2, 3, be a basis forg and (Ea) the basis forg∗ dual to (Eb),

i.e.,

〈Ea, Eb〉 = δa
b. (2.10)

We have

Ä = ÄaEa and
∑
=
∑

a

Ea, (2.11)

where

Äa ∈ F(T G),
∑

a

∈ F(T∗G).

By virtue of (2.10), ∑
a

(p) =
〈∑

(p), Ea

〉
, p ∈ T∗G. (2.12)

Combining Eqs. (2.9) and (2.12) yields∑
a

= F [Ea]. (2.13)

Thus
∑

a is the generator of the canonical lift(El
a) of El

a ∈ gL ⊂ χ (G), whereEl
a

andEa, are related by (
El

a

)
e = Ea (2.14)

(see (2.5)).
The structure constantsCc

ab of g with respect to the basis (Ea) are given by

[Ea, Eb] = Cc
abEc. (2.15)

Sinceg is simple, the structure constants are traceless:

Cb
ab = 0 (2.16)

According to notations (2.14) and (2.15), (El
a), a = 1, 2, 3, is the basis forgL such

that [
El

a, El
b

] = Cc
abEl

c. (2.17)

Let B be the Killing–Cartan form ofg. SinceG = SO(3; R) is simple and
compact,B is nondegenerate and negative definite. Hence, for anyα > 0,

Ke = −αB (2.18)
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is the (positive definite) inner product ing = TeG. Using Ke, we define a
Riemannian metricK on G by

K (v1, v2) = Ke(Ä(v1),Ä(v2)), v1, v2 ∈ TgG, g ∈ G. (2.19)

K is called the Killing–Cartan metric onG. It is invariant by both right and left
translations ofG:

K = (rg)∗K = (l g)∗K for all g ∈ G (2.20)

(see Kobayashi and Nomizu, 1963, p. 155). Hence, both left and right invariant
vector fields onG are the Killing fields of the metricK .

The Lagrangian of the rigid body fastened at some point,

L : T G→ R,

is a function of the form

L = T − V ◦ τ, (2.21)

where

T : T G→ R andV : G→ R

are the kinetic energy and the potential, respectively. The kinetic energy is given
by

T(v) = 1

2
I (Ä(v),Ä(v)) for v ∈ T G, (2.22)

whereI is a positive definite inner product ing. We shall callI the tensor of inertia
with respect to the co-moving (body-fixed) frame. Let us put

Iab = I (Ea, Eb). (2.23)

Then

T(v) = 1

2
IabÄ

a(v)Äb(v), v ∈ T G, (2.24)

whereÄa are given by first formula (2.11).

Definition 2.1. The rigid body is said to be spherical or isotropic if

I = λKe (2.25)

for a certainλ > 0 (see (2.18)).

Definition 2.2. The rigid body is said to be anisotropic if condition (2.25) is not
satisfied.
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Let the rigid body be spherical. Substituting (2.25) and (2.19) into formula
(2.22) gives

T(v) = 1

2
λK (v, v).

Hence, by virtue of (2.20), the kinetic energyT is invariant by both left and right
translations ofG.

For the anisotropic rigid body,T is invariant by the left translations (see first
equation (2.7)), but, in contrast to the isotropic one,T fails to be invariant by the
right translations (see second Eq. (2.7)).

The kinetic energy defined as the function onT∗G, i.e.,

T : T∗G→ R,

have the form

T(p) = 1

2
I ab

∑
a

(p)
∑

b

(p), p ∈ T∗G, (2.26)

where [I ab] is the inverse matrix of [Iab] and
∑

a are given by second formula
(2.11).
The Hamiltonian of the rigid body,

H = T + V ◦ τ ∗ : T∗G→ R,

is defined by

H = 1

2
I ab

∑
a

∑
b

+V ◦ τ ∗. (2.27)

3. QUANTUM RIGID BODY

There are two different, standard prescriptions for the quantization of the rigid
body. In this section we shall recall them. In the next section we shall prove the
prescriptions to be equivalent.

Let Fc(G) (resp.χc(G)) be the associative algebra of functionsG→ C| of
classC∞ (resp. the Lie algebra of complex vector fields of classC∞ on G). The
differentiability is understood as the differentiability in the real domain. We shall
denote byEndc(G) the associative algebra ofC| -linear endomorphisms ofFc(G).

LetDc(G) be the associative subalgebra ofEndc(G), generated byχc(G) and
endomorphisms of the multiplication by the functions belonging toFc(G) (i.e.,
f (h) = f h for h ∈ Fc(G) and f ∈ Fc(G) ⊂ Endc(G)). We shall callD ∈ Dc(G)
a differential operator (of classC∞) on G.

Let µ be the Haar measure on the compact Lie groupG = SO(3;R) and
L2(G, µ) the Hilbert space of complex functions onG, square-integrable with
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respect to the measureµ. Obviously,

Fc(G) ⊂ L2(G, µ). (3.1)

There exists the unique differential three-formη onG (which does not vanish
anywhere) such that for anyf ∈ L2(G, µ),∫

G
f (g)dµ(g) =

∫
G

f η. (3.2)

Sinceµ is invariant by right and left translations ofG,

£Xη = 0 for all X ∈ gL . (3.3)

According to the general quantization procedure (formulated, e.g., in Mackey,
1963 or SlÃawianowski, 1975b), the space of the physical states of the quantum rigid
body is identified withFc(G) ∩ L2(G, µ) = Fc(G) (see (3.1)).

Let

ϕ ∈ F(G).

Then

ϕ ◦ τ ∗ : T∗G→ R.

Passing from the classical level to the quantum one, we retainϕ (more precisely
ϕ ◦ τ ∗) actually unchanged. Namely, we replaceϕ ◦ τ ∗ with the operator ˆϕ ∈
Dc(G) given by

ϕ̂(ψ) = ϕψ for ψ ∈ Fc(G).

Hence, we can identify ˆϕ with ϕ and write

ϕ̂ = ϕ. (3.4)

Let

FX : T∗G→ R

be the generator of the canonical lift̄X of X ∈ χ (G) (see (2.2) and (2.3)). On the
quantum level, the functionFX is replaced with the operator̂F X ∈ Dc(G) defined
as follows:

F̂ X = h

i
X + h

2i
ρX, (3.5)

whereh = h/2π , h is the Planck constant andρX ∈ F(G) ⊂ Dc(G) is uniquely
determined by the condition

£Xη = ρXη
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(see (3.2)). Hence, by virtue of (3.3),

F̂ X = h

i
X for all X ∈ gL . (3.6)

Combining Eqs. (2.13) and (3.6) leads to∑̂
a
= h

i
El

a. (3.7)

We shall now employ the quantization rule presented above to construct a
quantum Hamiltonian of the rigid body:

Ĥ ∈ Dc(G).

Replacing in equation (2.27) the functions
∑

a, with the operatorŝ
∑

a, given by
(3.7) and retainingV unchanged (see (3.4)) yields

Ĥ = −h2

2
I abEl

aEl
b = V. (3.8)

The quantization prescription discussed above is based on the correspon-
dence between quantities belonging to the framework of the classical Hamiltonian
mechanics (i.e., functionsT∗G→ R) and differential operators onG. There is
another prescription for the quantization of the rigid body. It is a correspondence
between the kinetic energyT expressed by the velocityv, not by the momentum
p (i.e., the quantity belonging to the Lagrangian framework) and some differential
operator onG, defined as follows.

Since the tensor of inertiaI is the inner product ing = TeG, it induces a
Riemannian metric0 on G:

0(v1, v2) = I (Ä(v1),Ä(v2)), v1, v2 ∈ TgG, g ∈ G. (3.9)

From first formula (2.7) it follows that0 is invariant by the left translations of
G. This means that the right invariant vector fields onG are the Killing fields of
0. In contrast to the Killing–Cartan metricK , 0 fails to be invariant by the right
translations if the rigid body is anisotropic. Hence, for the anisotropic rigid body
the left invariant vector fields onG fail to be the Killing fields of0.

Substituting (3.9) into Eq. (2.22) leads to the following formula for the kinetic
energy of the rigid body:

T(v) = 1

2
0(v, v) v ∈ T G. (3.10)

We postulate that, on the quantum level, the functionT (given by (3.10) is replaced
with the operator of the kinetic energy,T̂ ∈ Dc(G), defined by

T̂ = −h2

2
10, (3.11)
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where10 denotes the Laplace–Beltrami operator on G corresponding to the metric
0. Then the classical formula

H = T + V ◦ τ ∗ : T∗G→ R

is replaced with the quantum one:

Ĥ0 = T̂ + V̂ ∈ Dc(G).

As in the previous case,̂V is given by (3.4). Hence

Ĥ0 = −h2

2
10 + V. (3.12)

If the rigid body is spherical,

0 = λK

for a certainλ > 0 (see (2.25)). Then it is easy to verify that

Ĥ0 = Ĥ ,

whereĤ is defined by (3.8).
In the next section we shall prove that the quantization procedure leading to

(3.8) and that leading to (3.12) are also equivalent (i.e., equation (3.13) is also
satisfied) if the rigid body is anisotropic.

Remark 3.1. For example, in Abraham and Marsden (1978, p. 433) one can find
the equation similar to (3.13). However, the authors do not explain why the operator
Ĥ0 coincides withĤ .

4. EQUIVALENCE OF TWO PRESCRIPTIONS FOR QUANTIZATION
OF ANISOTROPIC RIGID BODY

To begin with, let us recall the concept of the Laplace–Beltrami operator on
the Riemannian manifold.

Let M be ann-dimensional Riemannian manifold of classC∞ with a metric
h. We shall denote by∇ the covariant differentiation induced by the Levi–Civita
connection for the metrich.

The Laplace–Beltrami operator onM corresponding toh, 1h ∈ Dc(M), is
defined as follows. Let (U, κ), κ = (xi ), i = 1, . . . , n, be any chart ofM . We put

h|U = hi j dxi ⊗ dxi ,
√
|h| = √|det[hi j ]|. (4.1)

By [hi j ] and0i
jk we shall denote the inverse matrix of [hi j ] and the com-

ponents of the Levi–Civita connection forh, respectively. The value of1h on
f ∈ Fc(M) is defined by

(1h f )|U = hi j∇i (1 j f ). (4.2)
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Using the identities

∇h = 0 and0i
jk = 0i

k j

turns Eq. (4.2) into the form

(1h f )|U = 1√|h|
(
hi j
√
|h| f, j

)
,i . (4.3)

Obviously, the commas in (4.3) denote partial differentiation with respect to the
coordinates of (U, κ).

Let U be an open set of M andX1, . . . , Xn, ∈ χ (U) such that (XA), A =
1, . . . , n, is the field of linear frames. By (ωA), A = 1, . . . , n, we shall denote the
field of linear coframes dual to (XA), i .e., 〈ωA, XB〉 = δA

B.
We define a system of functionsγ A

BC ∈ F(U) by

[XB, XC] = γ A
BCXA. (4.4)

we callγ A
BC the structural functions of (XA). We put

h|U = hABω
A ⊗ ωB,

√
|hX| =

√
|det[hAB]|. (4.5)

By [hAB] we shall denote the inverse matrix of [hAB].
Let (U, κ), κ = (xi ) be any chart ofM such thatU ∩ U 6= ∅. We set

XA|U ∩ U = Xi
A

∂

∂xi
, ωA|U ∩U = ωA

i dxi . (4.6)

Combining Eqs. (4.4) and (4.6) leads to

Xi
A

(
ωA

j ,k − ωA
k, j
) = γ A

BCXi
Aω

B
j ω

C
κ . (4.7)

Replacing on the right-hand side of Eq. (4.3)∂
∂xi ,
√|h|andhi j with XA,

√
|hX|,

andhAB, respectively, we obtain the value of some differential operator on the
function f . In other words, we define1X ∈ Dc(U) by

1X f = 1√
|hX|

XA
(
hAB

√
|hX|XB f

)
(4.8)

for f ∈ Fc(U).

Theorem 4.1. A necessary and sufficient condition that

1X = 1h|U (4.9)

is that the structural functionsγ A
BC be traceless, i.e.,

γ A
B A = 0 B = 1, . . . , n. (4.10)
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Proof: Let (U, κ), κ = (xi ) be a chart ofM such thatU ∩ U 6= ∅. By virtue of
Eqs. (4.1), (4.5), and (4.6),

hAB = ωA
i ω

B
j hi j ,

√
|hX| = |det[Xk

C]n×n|
√
|h|. (4.11)

Substituting formulae (4.11) and first equation (4.6) into (4.8), and then using
(4.3) yields

(1X f )|U ∩ U = (1h f )|U ∩ U + Ri f,i ,

Ri = (det
[
Xl

B

])−1
X j

A

(
ωA

k det
[
Xl

B

])
,l h

ki .

Hence, Eq. (4.9) is satisfied if and only if

Ri f,i = 0 for all f ∈ Fc(U). (4.12)

SinceRi do not depend onf , condition (4.12) is equivalent to the following:

Ri = 0, i = 1, , . . . , n. (4.13)

By a straightforward calculation, we turn the system of Eqs. (4.13) into the form

Xi
A(ωA

j ,i − ωA
i , j ) = 0, j = 1, . . . , n. (4.14)

By virtue of (4.7), system (4.14) is equivalent to (4.10). Hence, we showed that
Eq. (4.9) is satisfied if and only if system (4.10) is satisfied. ¤

We are now in a position to prove that the two quantization prescriptions
presented in Section 3 are equivalent.

Theorem 4.2. Let Ĥ (resp. Ĥ0) be the quantum Hamiltonian of the arbitrary
(i.e., anisotropic or spherical) rigid body defined by (3.8) (resp. (3.12)). Then

Ĥ = Ĥ0. (4.15)

Proof: Let us express the Laplace–Beltrami operator10 (corresponding to the
left invariant metric0 onG) in terms of a distinguished field of linear frames onG,
namely the basis (El

a), a = 1, 2, 3, for the Lie algebrag0, of left invariant vector
fields onG.

Let (βa), a = 1, 2, 3, be the field of linear coframes onG dual to (El
a). We

put

0 = 0abβ
a ⊗ βb.

Then0ab ∈ F(G) are given by

0ab = 0(El
a, El

b). (4.16)
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Let √
|0| =

√
|det[0ab]|

and [0ab] be the inverse matrix of [0ab].
From (2.17) it follows that the structural functions of the field of linear frames

(El
a) (defined by (4.4)) are simply the structure constantsCc

ab of gL . By virtue of
(2.16), condition (4.10) is satisfied. Then Theorem 4.1 implies that

10 f = 1√|0|E
l
a

(
0ab

√
|0|El

b f
)

(4.17)

for f ∈ Fc(G).
Substituting (3.9) into (4.16) leads to

0ab(g) = I (Ä
((

El
a

)
g

)
,Ä
((

El
b

)
g

))
, g ∈ G.

Combining Eq. (2.6) and (2.14) gives

Ä((El
a)g) = Ea, g ∈ G.

Hence, by virtue of (2.23),

0ab(g) = Iab for g ∈ G. (4.18)

The componentsIab of the tensor of inertia are obviously constants. Thus equation
(4.18) implies that0ab are the constant functions onG. Then

√|0| and0ab are
the constant functions, too. Hence formula (4.17) can be written as

10 f = 0abEl
a

(
El

b f
)
.

By virtue of (4.18),

0ab = I ab,

where [I ab] is the inverse matrix of [Iab]. Thus

10 f = I abEl
a

(
El

b f
)

for f ∈ Fc(G).

Hence

10 = I abEl
aEl

b. (4.19)

Substituting (4.19) into formula (3.12) yields

Ĥ0 = −h

2
I abEl

aEl
b + V. (4.20)

Comparing (4.20) with (3.8), we find that Eq. (4.15) is satisfied. ¤
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